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discipline sensitivity derivatives (SDs). The incremental
iterative method (IIM) was proposed and demonstratedThe straightforward automatic-differentiation and the hand-differ-

entiated incremental iterative methods are interwoven to produce a to provide such first-order SDs from a two-dimensional
hybrid scheme that captures some of the strengths of each strategy. (2D) thin-layer Navier-Stokes (TLNS) flow code for both
With this compromise, discrete aerodynamic sensitivity derivatives geometric (shape) and nongeometric (flow) design vari-
are calculated with the efficient incremental iterative solution algo-

ables in Refs. [1, 2]. The IIM allows accurate, consistentrithm of the original flow code. Moreover, the principal advantage
discrete SDs to be obtained with computational efficiencyof automatic differentiation is retained (i.e., all complicated source

code for the derivative calculations is constructed quickly with accu- (with respect to both computational time and memory
racy). The basic equations for second-order sensitivity derivatives requirements). Furthermore, the IIM also allows the use
are presented, which results in a comparison of four different meth- of approximate matrix operators for further efficiency,
ods. Each of these four schemes for second-order derivatives re-

parallelization, or robustness, etc. Results for first-orderquires that large systems are solved first for the first-order deriva-
SDs from an IIM for three-dimensional (3D) Euler codestives and, in all but one method, for the first-order adjoint variables.
(Refs. [3–5]) have also been presented. In all of theOf these latter three schemes, two require no solutions of large

systems thereafter. For the other two for which additional systems above cited works, the discretized flow residuals were
are solved, the equations and solution procedures are analogous differentiated by hand (also called the quasi-analytical
to those for the first-order derivatives. From a practical viewpoint, (QA) method) and assembled to obtain the first-orderimplementation of the second-order methods is feasible only with

SDs by an IIM.software tools such as automatic differentiation, because of the
In the present study, numerical results are given forextreme complexity and large number of terms. First- and second-

order sensitivities are calculated accurately for two airfoil problems, the application of automatic differentiation (AD) [6–8] to
including a turbulent-flow example. In each of these two sample obtain first-order aerodynamic SDs from an IIM for the
problems, three dependent variables (coefficients of lift, drag, and same 2D TLNS code and sample problems studied in [1].
pitching-moment) and six independent variables (three geometric-

The numerical results are compared on the basis of accu-shape and three flow-condition design variables) are considered.
racy and computational time and memory. Previous first-Several different procedures are tested, and results are compared

on the basis of accuracy, computational time, and computer mem- order SDs from the hand-differentiated IIM and the central
ory. For first-order derivatives, the hybrid incremental iterative finite-difference (CD) method [1] are compared with newly
scheme obtained with automatic differentiation is competitive with obtained AD results for both the straightforward and the
the best hand-differentiated method. Furthermore, it is at least two incremental-iterative-form applications. This latter ap-to four times faster than central finite differences, without an over-

proach is new. That is, previous straightforward applica-whelming penalty in computer memory. Q 1996 Academic Press, Inc.

tions of AD to advanced CFD codes [9–12] did not result
in an incremental iterative form, as will be discussed sub-
sequently. This problem was recognized and noted in1. INTRODUCTION
[2, 9–11], in which the use of AD in incremental iterative

The use of advanced computational fluid dynamics form was proposed.
(CFD) analysis codes in multidisciplinary design optimiza- An additional focus of this study is the development of

the basic equations for computing second-order discretetion studies and applications via sensitivity analysis re-
aerodynamic SDs, which yields four methods. Where appli-quires the efficient and accurate calculation of individual-
cable, the incremental iterative forms of these equations
are also given. Numerical results (i.e., second-order SDs)1 Correspondence should be addressed to Arthur C. Taylor, III, Dept.
are shown for the same 2D sample problems for whichof Mechanical Engineering, KDH 238, Old Dominion University,

Norfolk, VA 23529-0247. first-order SDs are calculated.
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The second-order aerodynamic SDs are of interest for therein provide an overview of recent advances in FO
sensitivity analysis for modern, nonlinear CFD software.several reasons. For example, aerodynamic stability deriva-

tives are required by the controls discipline as an input. After discretization, the nonlinear, multidimensional
steady-state governing equations of fluid flow and theTherefore, inclusion of controls in a gradient-based multi-

disciplinary design optimization procedure means that the boundary conditions are approximated as a large system
of coupled nonlinear algebraic equations assensitivities of stability derivatives are needed, which are

second-order SDs. Second, in constructing function ap-
proximations for nonlinear flow behavior, the expansions R 5 R(Q(b), X(b), b) 5 0, (2.1)
that use first-order derivative information are only of lim-
ited usefulness. For N independent variables D, the trun-

where Q is the vector of field variables, X is the computa-cated Taylor series
tional grid, and b is the vector of independent input (de-
sign) variables. Similarly, the vector of aerodynamic output
functions F is dependent on Q, X, and b asf(D 1 DD) Q f(D) 1 ON

j 5 1

­ f
­Dj

DDj (1.1)

F 5 F(Q(b), X(b), b). (2.2)
is a linear approximation. If the derivatives ­2f /­Dk­Dj are
available, then In Eqs. (2.1) and (2.2) and all subsequent equations, all

applicable terms are evaluated at the steady-state flow
conditions, unless explicitly superscripted with an appro-

f(D 1 DD) Q f(D) 1 ON
j51

­f
­Dj

DDj
(1.2) priate iteration index.

2.1.1. The Direct Differentiation (DD) Method1
1
2 O

N

j51
ON
k51

­2f
­Dk­Dj

DDj DDk

Differentiation of Eqs. (2.2) and (2.1) with respect to b
yields the respective matrix equations

may exhibit much of the nonlinear behavior of f. Third,
and more importantly, second-order optimization tech-
niques can be employed. DF9 ; ­F

­Q
Q9 1

­F
­X

X9 1
­F
­b

, (2.3)
The remainder of the paper is organized as follows:

Section 2 discusses first-order derivatives, including devel-
R9 5

­R
­Q

Q9 1
­R
­X

X9 1
­R
­b

5 0, (2.4)opment of the equations, methods, results (tabulated in
Appendix A), and conclusions. Section 3 discusses second-
order derivatives, including development of the equations, where
methods, results (tabulated in Appendix B), and conclu-
sions. Section 4 presents a summary and final conclusions.
A relatively large number of nonstandard acronyms are DF9 ; dF

db
; R9 ; dR

db
; Q9 ; dQ

db
; X9 ; dX

db
.

used in this article, in order to streamline the text and the
tables of results. Therefore, for the convenience of the
reader, the acronyms used throughout the article are col- The matrix DF9 contains the SDs of interest; the superscript
lected in tables in Appendix C, as follows. General termi- D denotes that they are obtained by the direct differentia-
nology has been collected in Table C.1. Acronyms which tion (DD) method. The matrix Q9 represents the SDs of
refer to methods for the first-order SDs have been gathered the field variables. The matrix X9 represents the grid-sensi-
in Table C.2; for the second-order derivatives, the same is tivity terms (which typically are obtained by differentiating
given in Table C.3. the grid-generation code). The very large linear system

(Eq. (2.4)) is solved first for Q9 so that the SDs DF9 can
be calculated subsequently.2. FIRST-ORDER SENSITIVITY DERIVATIVES (FO SDs)

2.1. Basic Equations and Incremental Iterative Forms 2.1.2. The Adjoint-Variable (AV) Method

As an alternative to solving Eq. (2.4) for Q9, an adjoint-A brief review is given of the basic equations of first-
order (FO) discrete aerodynamic sensitivity analysis; also variable matrix A is introduced to combine Eqs. (2.3) and

(2.4). The matrix A is then specified to ensure that theincluded is the incremental iterative form for solving the
equations. A thorough discussion is given in [1, 2]. Refer- resulting coefficients of Q9 vanish. The adjoint-variable

(AV) method becomesence [13], which is a review article, and the references
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where
AF9 ; ­F

­X
X9 1

­F
­b

1 AT S­R
­X

X9 1
­R
­bD (2.5)

R9m 5
­R
­Q

Q9m 1
­R
­X

X9 1
­R
­b

. (2.11)
G9 ; S­R

­QDT

A 1 S­F
­QDT

5 0. (2.6)

In Eq. (2.9), the LHS coefficient matrix ­R
p

/­Q represents
any convergent, computationally convenient approxima-The matrix AF9 contains the sensitivity derivatives of inter-
tion of the exact Jacobian matrix. In particular, the identi-est; the superscript A denotes that they are obtained by
cal approximate LHS operator and algorithm that are usedthe AV method. However, DF9 5 AF9 ; dF /db. The very
to solve the nonlinear flow equations can also be used tolarge linear system of Eq. (2.6) is first solved for A in order
solve the linear sensitivity equations. Comparison of Eqs.that the SDs AF9 can be calculated subsequently.
(2.7) and (2.8) with Eqs. (2.9) and (2.10) reveals that theThe dimension of b and, thus, the column dimension of
sensitivity equations are solved by interchanging the right-Q9 is the number of design variables (NDV). The dimen-

sion of F and, thus, the column dimension of A is the hand side (RHS) of Eq. (2.7) with that of Eq. (2.9) and
number of output functions (NOF). Therefore, if the NDV ‘‘freezing’’ the LHS operator at the steady-state value. At
is greater than the NOF, then the solution of Eq. (2.6) is convergence, the accuracy of the SDs is not compromised
likely to be computationally less expensive than that of if the terms on the RHS of Eq. (2.9) are evaluated consis-
Eq. (2.4). (It will definitely be less expensive for a direct- tently. The use of the IIM is also applicable in the AV
solution procedure. Iterative methods are normally re- method to solve Eq. (2.6), in which case the LHS operator
quired, however, because of the extreme size of the coeffi- ­R

p
/­Q must be transposed. The IIM for the AV method

cient matrix.) becomes

2.1.3. The Incremental Iterative Solution Method (IIM). p
2 S­R

­QDT

DAm 5 Gm (2.12)
As an alternative to pure Newton iteration, typical CFD

codes employ what is sometimes called quasi-Newton itera-
Am11 5 Am 1 DAm; m 5 1, 2, 3, ..., (2.13)tion, which is an incremental iterative method (IIM), to

solve the nonlinear flow system (Eq. (2.1)). This can be
whereexpressed as

p
Gm 5 S­R

­QDT

Am 1 S­F
­QDT

, (2.14)2
­Rn

­Q
DQn 5 Rn (2.7)

Qn11 5 Qn 1 DQn ; n 5 1, 2, 3, .... (2.8)
and the superscript T indicates a matrix transpose.

The left-hand-side (LHS) coefficient matrix operator ­Rnp/ 2.2. Applications of ADIFOR
­Q of Eq. (2.7) is, in many CFD codes, at best only a rough

This section describes different applications of AD toapproximation to the exact Jacobian matrix operator that
assist in the efficient, accurate calculation of FO SDs fromis associated with true Newton iteration. Thus, Eqs. (2.7)
advanced CFD codes. In particular, the AD precompilerand (2.8) are intended to represent the broad spectrum of
software tool ADIFOR (Automatic Differentiation of For-iterative algorithms (either implicit or explicit) that are
tran) of [9, 15–18] is used in this study. The ADIFORcommon to CFD software.

Numerous computational difficulties are associated with precompiler tool is applied to the original FORTRAN
solving the FO linear sensitivity equations in the standard program source code from which the SDs are to be ob-
form given by either Eq. (2.4) (the DD method) or Eq. tained. The output of this precompiler procedure is a new,
(2.6) (the AV method). These difficulties are documented, differentiated source code, which upon compilation and
for example, in [1, 14]. Previous studies [1–5] have shown execution will compute (exactly, up to machine round-off)
that these computational difficulties can be overcome (at the numerical value(s) of the derivative(s) of any specified
least in part) by iteratively solving these equations in incre- output function(s) with respect to any specified input vari-
mental iterative form. For the DD method (Eq. (2.4)), the able(s). In addition, the new program will perform the
IIM is function evaluations of the original code.

p
2.2.1. Black-Box Applications

2
­R
­Q

DQ9m 5 R9m (2.9)
Application of ADIFOR to FORTRAN coding of an

iterative solution algorithm (e.g., CFD software) producesQ9m11 5 Q9m 1 DQ9m; m 5 1, 2, 3, ..., (2.10)
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a similar iterative algorithm for computing the exact deriv- currently available supercomputers might be too small to
store the complete P. In this case, P obviously cannot beatives. However, as noted in [2, 9–13, 19], this latter itera-

tive algorithm obtained from a straightforward ‘‘black frozen in memory and reused.)
box’’ (BB) AD application may be neither computationally (3) The AD-enhanced CFD code will continue to iter-
efficient nor robust. Furthermore, in general, it is not in ate on the solution to the nonlinear flow equations, regard-
the desired incremental iterative form, even if the original less of whether or not they are already well converged.
solution algorithm was in that form (as illustrated subse-

(4) With the straightforward (BB) application of AD
quently). The previous BB applications of ADIFOR to

represented by Eq. (2.16), all parts of the term R9n are
advanced CFD codes [9–12] produced iterative algorithms

forced inside the iteration loop and, thus, are calculated
for SD calculations in which the entire flow-solution algo-

at each iteration. However, for the HD IIM represented
rithm was differentiated.

by Eq. (2.17), most of the terms of R9m can be placed
From the discussion in [9, 10], this process whereby the

judiciously outside the iteration loop. As seen from Eq.
SDs are iteratively calculated (following the straightfor-

(2.11), only the matrix–matrix multiplication operation
ward BB use of AD) can be represented conceptually by

(­R/­Q)(Q9m) must be inside this loop.
first combining Eqs. (2.7) and (2.8) (i.e., the basic CFD

(5) The ‘‘vectorization’’ properties of the AD-en-flow-solution procedure) to yield
hanced CFD code (Eq. (2.16)) for efficient operation on
Cray-type computers may be severely degraded in compar-Qn11 5 Qn 2 PnRn; n 5 1, 2, 3, ..., (2.15)
ison with those of the original code. In addition, depending
on the approach used in the application of the ADIFORwhere Pn ; (­Rnp/­Q)21. Differentiation with respect to b
tool and on how many SDs are calculated simultaneously,then yields
the computer memory requirements could become ex-
cessive.Q9n11 5 Q9n 2 PnR9n 2 P9nRn; n 5 1, 2, 3, .... (2.16)

Certain BB applications of AD, discussed subsequently,
In contrast with Eq. (2.16), a hand-differentiated (HD) may enable the complete elimination of the second compu-
implementation of the DD method (i.e., Eqs. (2.2) and tational difficulty discussed above and greatly limit the
(2.3)) for the FO SDs can be expressed by combining Eqs. impact of the first. Some CFD codes, particularly those
(2.9) and (2.10) (an IIM) to yield of the 2D implicit type, are equipped with an optional

computational-work (CW) saving strategy known as the
Q9m11 5 Q9m 2 PR9m; m 5 1, 2, 3, .... (2.17) ‘‘frozen Jacobians’’ (FJ) option. This scheme takes advan-

tage of the fact that as the quasi-Newton flow-solution
method of Eqs. (2.7) and (2.8) converges, the LHS operatorSymbolically, of course, Eqs. (2.16) and (2.17) are equiva-
of Eq. (2.7) becomes approximately constant. The FJ op-lent only at convergence of the flow solution, when Rn

tion provides the capability of freezing (not updating) thesevanishes (which also results in the disappearance of P9nRn),
terms (represented by Pn in Eq. (2.15)) for a specifiedand Pn becomes constant at the steady-state value. Compu-
number of iterations. The result is typically a large savingstationally, however, Eq. (2.17) is potentially much more
in CW per iteration.efficient for several reasons:

For an AD-enhanced CFD code with the FJ option
(1) If the AD-enhanced CFD flow code is executed (henceforth known as the BBFJ method), the potential for

after the original code has produced a well-converged flow CW savings is very large (i.e., proportionally far greater
solution, then the convergence rate of Eq. (2.16) might than for the original CFD code because the unnecessary
be accelerated somewhat. However, differentiation of the repeated update of Pn and of the unwanted P9n can be
complete CFD solution algorithm and repeated calculation avoided in Eq. (2.16)). The AD-enhanced CFD code is
of these solution-algorithm derivatives (represented by P9n

simply started with a well-converged flow solution, and the
in Eq. (2.16)), although unwanted and unnecessary, is not FJ option is set to activate for all iterations (after the
avoided. The computationally wasteful, repeated calcula- first iteration).
tion of P9n is likely a significant part of the total work With the BBFJ strategy, clearly the first computational
represented by Eq. (2.16). inefficiency (discussed previously) is reduced significantly,

(2) In Eq. (2.17), the term P is constant. Thus, in princi- but not eliminated. It is suggested that further improve-
ple, only a one-time calculation is required; thereafter, it ments to the BBFJ method might be made by editing
should be stored in memory and reused repeatedly for out these terms (i.e., P9nRn of Eq. (2.16)) from the AD-
all iterations. In Eq. (2.16), however, Pn (the CFD flow- enhanced code. If successful, this process could also have
solution algorithm) is updated at each iteration. (For 3D significant collateral benefits with respect to reduced com-

puter memory requirements and restored vectorization.CFD calculations on large grids, the computer memory of
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These improvements are aimed at making the BB method tine). Furthermore, these applications of AD are further
subdivided to ensure the terms which must be calculated(Eq. (2.16)) more like the IIM applied to the hand-differen-

tiated DD method (given by either Eq. (2.17) or Eqs. (2.9) inside the iteration loop (i.e., (­R/­Q) Q9m) can be
separated from the remaining terms that should be placedthrough (2.11)).
outside the loop. Finally, the AD versions of these
subroutines are then carefully interwoven to function as2.2.2. Incremental Iterative Applications
the ADII scheme.

Earlier studies [2, 9–11] have proposed that many of the One important and useful feature of the ADIFOR sys-
previously discussed computational inefficiencies associ- tem for AD is that terms of the type (­R/­Q) Q9 or (­R/
ated with the BB application of ADIFOR to CFD codes

­X) X9 (recall Eqs. (2.4) and (2.11), for example) are
(Eq. (2.16)) can be overcome (at least in part) by a more calculated without the explicit calculation of the very large
judicious application of ADIFOR. The goal of this ap- Jacobian matrices ­R/­Q or ­R/­X, respectively, and with-
proach is that the resulting SD calculations are (more out explicit postmultiplication by the matrices Q9 or X9,
nearly) in the IIM form of a HD application of the DD respectively. Of course, the AD-enhanced code, which can
method (Eq. (2.17)). Specifically, in the present study, evaluate these complete expressions, will require increased
ADIFOR is applied to differentiate only the RHS of Eq. memory over that of the original code. However, this in-
(2.7), which is the residual R of the nonlinear flow equa- crease is approximately equal only to the memory of the
tions (Eq. (2.1)). These differentiated terms are assembled original code times the column dimension of Q9 and X9.
on the RHS of Eq. (2.9). The resulting scheme is thereby For the present application, this is NDV, which is the
essentially that expressed by the efficient Eq. (2.17), which dimension of b (or the dimension of that fraction of b for
is the desired IIM. The construction of the required which SDs are to be concurrently via the ADII method).
derivatives is now via AD rather than hand differentia- The final result is an extremely fortuitous conservation of
tion. This IIM scheme is henceforth known as the ADII computer memory. Without this conservation of memory,
method; it should effectively combine an existing, highly given the overwhelming size of ­R/­Q and ­R/­X, the
efficient, incremental iterative solution algorithm with application of ADIFOR to advanced CFD codes would
a fast, accurate, reliable procedure for constructing all be infeasible. Despite these positive features with respect
required terms. to computer memory, one should note that the CPU time

The ADII strategy will bypass the most obvious compu- associated with each repeated evaluation of (­R/­Q) Q9m

tational inefficiencies of the BB strategy. For example, the via AD-generated code will be significantly larger than
unnecessary construction and repeated evaluation of the that which could be achieved (in principle) via hand differ-
term P9n in Eq. (2.16) is completely avoided, and the opera- entiation and an efficient, hand-coded procedure for evalu-
tor P is not updated at each iteration (at least, in principle, ation of these same terms.
it need not be updated). Furthermore, evaluation of all In contrast with the preceding discussion, expressions
derivative terms except (­R/­Q) Q9m can and should now of the form (­R/­Q)T A (recall Eqs. (2.6) and (2.14) of
be placed outside the iteration loop. With the ADII proce- the AV method) cannot currently be evaluated via applica-
dure, the computationally wasteful, repeated calculation tions of ADIFOR without the explicit calculation of the
of Rn is not avoided. Fortunately, however, the repeated very large transposed Jacobian matrix (­R/­Q)T and the
full iteration on the nonlinear flow equations does not postmultiplication of it by the matrix A. For modern CFD
continue with this scheme. Despite these improvements codes, this step is completely infeasible. Unfortunately,
with the ADII procedure, some important issues remain ADIFOR cannot be considered to assist in the construction
with respect to its implementation, efficiency, vectoriza- of these terms in the IIM for the AV scheme (Eq. (2.14)).
tion, and computer memory requirements. These issues Nevertheless, it can be used to construct the remaining
are addressed subsequently, at least in part. terms (Eq. (2.5)).

A more detailed discussion is provided in [20] of how
ADIFOR should be applied to implement the ADII

2.2.3. Turbulence-Modeling Applications
scheme. Only a few key highlights are mentioned here.
Most important to note is that this scheme must be The presence of turbulence modeling presents a chal-

lenge in the calculation of aerodynamic SDs. The task ofassembled with great care to ensure that contributions
to the SDs from the boundary conditions are taken into differentiating the turbulence-modeling terms to include

their influence in the Jacobian matrices and other termsaccount fully. Failure to do this will result in severe
errors in the calculated SDs (Ref. [21]). In the present of the DD and AV methods can be exceedingly complex

to do by hand. Symbolic manipulators could be used tostudy, this involves separate applications of AD (i.e.,
applications to a master boundary-condition subroutine differentiate the algebraic equations involved, with pro-

gram-flow control by macros, and then to generate SD-and applications to a master interior-cell-residual subrou-
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code. However, ADIFOR has the advantage of being able Similar manipulations applied to Eq. (2.4) of the DD
method yieldto directly work with the existing FORTRAN source code,

with automatic program-flow control and global depen-
dency checking.

R9 5 S­R
­QDV

Q9 1 S­R
­XDV

X9 1 S­R
­bDV

1
­R
­V

V9 5 0.In the earlier study of [1], a HD IIM version of the DD
and AV schemes was created to compliment a 2D TLNS (2.23)
CFD code. (Henceforth, these two HD schemes are re-
ferred to as the DDII and AVII methods, respectively.) Clearly, the viscosity-derivative correction terms to be
These two schemes were shown to generate very accurate added in Eqs. (2.21) and (2.23) are (­F/­V) V9 and
SDs for constant-viscosity laminar flow but produced sig- (­R/­V) V9, respectively. In the present study, ­F/­V and
nificantly erroneous SDs for turbulent flow. This discrep- ­R/­V are constructed by hand, and V9 is constructed via
ancy resulted because the turbulent viscosity terms (from ADIFOR. The three terms of V9 on the RHS of Eq. (2.22)
the Baldwin–Lomax algebraic model (Ref. [22]) were not are constructed with separate applications of ADIFOR so
differentiated by hand because of their complexity. In the that the terms (­V/­Q) Q9 can be separated from the
present study, ADIFOR is applied to correct this defi- others and placed inside the iteration loop. The terms
ciency. That is, ADIFOR is applied to differentiate the (­V/­Q) Q9 and (­V/­X) X9 are assembled without the
turbulence-modeling terms only, and the results are incor- explicit computation of the Jacobian matrices ­V/­Q and
porated as a correction in the HD SD-code. This correction ­V/­X. Thus, these terms are evaluated without an exces-
is applied to the DDII scheme only, which results in a sive expansion of the computer memory, as discussed pre-
method known henceforth as DDIITC. This correction viously in regard to the AD-assisted evaluation of the terms

(­R/­Q) Q9 and (­R/­X) X9.could not be added in full to the AVII scheme, for reasons
The IIM for solving Eq. (2.23) becomesdiscussed subsequently. Therefore, no AVIITC strategy

currently exists. p
Conceptually, the AD correction for the viscosity terms 2 S­R

­QDV
DQ9m 5 R9m 5 R9m

V 1
­R
­V

V9m, (2.24)
is added to the DDII scheme as

Q9m11 5 Q9m 1 DQ9m; m 5 1, 2, 3, ..., (2.25)

­F
­Q

5 S­F
­QDV

1
­F
­V

­V
­Q

(2.18) where

R9m
V 5 S­R

­QDV
Q9m 1 S­R

­XDV
X9 1 S­R

­bDV
, (2.26)­F

­X
5 S­F

­XDV
1

­F
­V

­V
­X

(2.19)

V9m 5
­V
­Q

Q9m 1
­V
­X

X9 1
­V
­b

. (2.27)­F
­b

5 S­F
­bDV

1
­F
­V

­V
­b

, (2.20)

In the turbulent sample problem of this study, the term
(­V/­Q) Q9m was a computationally expensive addition towhere V is a vector of viscosity terms (including the turbu-
the iteration loop, even after the ADIFOR-generated codelent viscosity). The subscript V in the above indicates dif-
was extensively ‘‘massaged’’ to restore vectorization andferentiation within the term with V held constant. Thus,
other features related to efficiency. Initially, the computa-terms with this subscript represent the original terms of
tional cost per iteration was about 3.62 times more costlythe uncorrected, HD code. Substitution of the above into
per iteration when the correction was switched on, al-

Eq. (2.3) of the DD method results in
though the overall rate of convergence was not affected
greatly. A CW saving strategy was proposed and tested,
where the term (­V/­Q) Q9m of Eq. (2.27) was frozen (not

DF9 5 S­F
­QDV

Q9 1 S­F
­XDV

X9 1 S­F
­bDV

1
­F
­V

V9 (2.21) updated) inside the iteration loop for a specified number
of iterations. For 10 frozen iterations prior to each update
of this term, the overall increase in average CW per itera-
tion due to this turbulence-modeling correction was aboutwhere
26.6% (compared with the CW per iteration with this cor-
rection switched off) with no major impact on the rate of
total error reduction. Furthermore, the correction had littleV9 ; dV

db
5

­V
­Q

Q9 1
­V
­X

X9 1
­V
­b

. (2.22)
impact on the computer storage requirements.
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The unsuccessful attempt to correct the AVII scheme this parameter is too large, the memory requirements of
the code could be excessive.for turbulent flow yielded the following formulation:

The AD-enhanced code retains all do-loops and function
evaluations of the original code. Within each original do-

AF9 5 S­F
­XDV

X9 1 S­F
­bDV

1 AT FS­R
­XDV

X9 1 S­R
­bDV

G loop is inserted one or more new innermost do-loops. The
length of each new do-loop is g$p$ (e.g., DO 10 I 5 1,
g$p$). Inside these new loops, derivative calculations are

1 S­F
­V

1 AT ­R
­VD S­V

­X
X9 1

­V
­bD , (2.28) made. The presence of these new innermost do-loops has a

profound impact (frequently negative) on the vectorizationp
characteristics for performance on Cray-type computers:

2S­R
­QDT

V
DAm 5 Gm 5 Gm

V 1 Gm
TC , (2.29)

(1) The do-loops of the original code, which previously
vectorized, will no longer be vectorized in the AD-en-Am11 5 Am 1 DAm; m 5 1, 2, 3, ..., (2.30)
hanced version. An exception to this is when g$p$ # 5;
the ‘‘aggressive’’ Cray compiler option will automaticallywhere
‘‘unwind’’ the new innermost loops and may restore the
vectorization of the original loops, complete with the deriv-
ative calculations.Gm

V 5 S­R
­QDT

V
Am 1 S­F

­QDT

V
, (2.31)

(2) For g$p$ $ 6, vectorization of the original loops
is not recovered, but with the aggressive compile option,

Gm
TC 5 S­V

­QDT FS­R
­VDT

Am 1 S­F
­VDTG . (2.32) the new innermost loops are vectorized. Nevertheless,

overall code performance remains poor on Cray computers
unless g$p$ is large enough that the vector lengths becomeAll parts of the turbulence correction can be constructed
sufficiently long for efficient execution on these machines.easily via ADIFOR, except Gm

TC (Eq. (2.32)). The present
At the same time, however, for large g$p$ the computerversion of ADIFOR can construct this term only by explic-
memory requirements of the AD-enhanced CFD softwareitly computing the large matrix (­V/­Q)T and postmulti-
can become excessively large.plying it by the terms shown. As discussed previously for

the matrix-matrix product (­R/­Q)T A, this procedure is Apart from the vectorization considerations discussed
not feasible for modern CFD codes. above, the number of arithmetic operations per concur-

rently computed derivative is always decreased as g$p$
2.2.4. Vectorization and Memory Considerations increases. This happens because, for each execution of

an AD-enhanced code, part of the derivative calculationsPrior to the compilation and execution of any AD-
occur outside of the innermost loops, and the results areenhanced FORTRAN source code, a parameter g$p$ is
reused for all derivative calculations within the innermostspecified within the code. For each execution of the code,
loops. Furthermore, the complete function evaluations ofthis parameter determines the number of independent (de-
the original code are performed only one (but, as needed,sign) variables with respect to which derivatives are concur-
are thereafter used for the derivative calculations withinrently computed. Thus, the user has the following options:
the innermost loops).

The sample problems illustrate the consequences dis-(1) Compute all required derivatives by executing the
cussed previously; the results from these sample problemsAD-enhanced code once for each independent variable
are to be given. For example, (except when g$p$ is large)(i.e., NDV code executions with g$p$ 5 1).
g$p$ 5 5 produces the highest computational efficiency(2) Compute all required derivatives by executing the
per design variable, and this efficiency is progressively re-AD-enhanced code only once (i.e., one code execution,
duced as g$p$ is reduced to 1. A particularly inefficientwith g$p$ 5 NDV).
case is that of g$p$ 5 6 (thereafter efficiency gradually

(3) Set g$p$ such that 1 # g$p$ # NDV; this requires increases as g$p$ increases). In the case with NDV 5 6,
multiple executions (less than NDV) of the AD-enhanced rather than perform one code execution with g$p$ 5 6,
code, where subgroups of g$p$ derivatives are concurrently two code executions, each with g$p$ , 6 (e.g., the first
computed for each code execution. execution with g$p$ 5 5 and the second execution with

g$p$ 5 1), were significantly more efficient.The specified value of g$p$ has a significant impact on
computational requirements in several critical ways. With

2.3. Computational Results: FO SDsrespect to memory, for example, recall that the memory
increase of the AD-enhanced code is approximately equal Two sample problems are considered here. They are

identical in every way to those studied previously in [1],to g$p$ times the memory of the original code. Thus, if
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where a more complete description is given. The first exam- A.1 (in Appendix A) for the laminar example. The actual
numerical values of the SDs are given for the CD method.ple is low-Reynolds-number (Re 5 5 3 103) subsonic

(My 5 0.6), constant-viscosity laminar flow over an isolated For the other methods, SD ratios are given (i.e., each SD
has been normalized by the respective SD calculated viaNACA 1406 airfoil at an angle-of-attack, a 5 1.08. The

second example is similar, except the flow is a high-Reyn- the CD scheme). Table A.1 clearly shows excellent
agreement among all these methods, as expected.olds-number (Re 5 5 3 106) transonic (My 5 0.8) turbulent

flow. Flow calculations are made on a C-mesh with dimen- The SDs for the turbulent example are presented in
Table A.2. The actual SDs are shown for the CD scheme;sion 257 3 65 (circumferential 3 normal direction). The

clustering of points near the airfoil’s surface was tighter the remaining cases are shown as SD ratios. As expected,
this table shows excellent agreement within the DDIITC,for the high-Reynolds-number example. Grid-sensitivity

derivatives were produced with a unique scheme that was ADII, BB, and CD methods. The results for the DDII and
AVII methods do not agree well (for some SDs) with thefirst reported in [14] and was subsequently applied to these

sample problems in [1]. other schemes because of the turbulence-modeling terms,
as discussed previously herein and in [1]. The erroneousThe CFD code applied here (and in [1]) solves the 2D

TLNS equations with an upwind, cell-centered finite-vol- results for the DDII and AVII schemes agree extremely
well with each other, however, because the two are algebra-ume formulation with a higher-order-accurate evaluation

of all fluxes and the algebraic turbulence modeling of ically equivalent. For this reason, the results for these two
methods are shown as a single result in Table A.2.Baldwin and Lomax [22]. The code employs an implicit,

spatially split approximate-factorization flow-solution al- The good accuracy and agreement in the preceding re-
sults is due in part to the very tight convergence tolerancesgorithm. In addition to the nonlinear flow equations, this

same algorithm is also used within all the subsequent IIM that were enforced on all calculations. The average total
error was reduced to machine zero (a relative reductionsolutions of the linear sensitivity equations. Also available

is the FJ option (discussed previously), where the entire of approximately 12 orders-of-magnitude (OM)) in the
initial flow solution and in all 12 flow solutions that wereapproximate implicit operator (i.e., the complete set of LU-

factored block-tridiagonal coefficient matrices) is stored in required for the CD method (i.e., two solutions per design
variable). Very small forward and backward perturbationsmemory and repeatedly reused (not updated) for a speci-

fied number of iterations. Dbj 5 65.0E-6 3 bj are made to each design variable to
ensure good accuracy with the CD method. For each linearAs in [1], the FO SDs of three aerodynamic output

functions CL , CD , and CM (the coefficients of lift, drag, system that was solved to compute these SDs, the error
was reduced at least eight OM. In each sample problem,and pitching-moment, respectively) are calculated with re-

spect to three geometric shape variables T, C, and L (maxi- this involved NDV 5 6 solutions for the DDII, DDIITC,
ADII, and BB methods, and NOF 5 3 solutions for themum thickness, maximum camber, and location of maxi-

mum camber, respectively) and with respect to three flow AVII scheme.
variables a, My , and Re (each defined previously). There-
fore, F ; (CL , CD , CM)T and b ; (T, C, L, a, My , Re)T. 2.3.2. Computational Time and Memory Comparisons
The SDs are computed with a wide variety of different

In this section, some of the methods discussed in themethods, including the method of central finite-differences
previous section are further subdivided. These subdivisions(CD). The results are compared on the basis of accuracy
have little or no impact on the SDs that are calculated,and computational time and memory.
but they can have a significant impact on the total computa-
tional efficiency of the method.

2.3.1. Accuracy Comparisons
The CD method is subdivided into two methods, de-

pending on whether or not the FJ option is activated. WhenThe FO SDs are calculated for both sample problems
with the methods CD, DDII, AVII, ADII, and BB. In active, 10 iterations of Eqs. (2.7) and (2.8) are specified

prior to each update of the LHS operator. The methodsaddition, the DDIITC scheme is applied only to the turbu-
lent example (because it is unnecessary for the laminar without and with the FJ option are referred to as the CD

and CDFJ methods, respectively.case). The application of the CD, DDII, and AVII schemes
to these problems repeats the work of [1]; therein, the Similarly, the BB method is subdivided into two meth-

ods, depending on whether the FJ option is activated (themanner in which these schemes are applied is discussed in
depth. Of course, the DDIITC, ADII, and BB schemes BBFJ scheme) or not (the simple BB scheme). These two

BB methods are further subdivided into additional meth-are the methods for which derivatives are calculated via
applications of ADIFOR, either in part or in total (de- ods, depending on how the parameter g$p$ is applied. Two

options were tested: first, all SDs were calculated with apending on the scheme).
The SDs that were calculated are presented in Table single execution of the AD-enhanced code (i.e., this implies
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g$p$ 5 NDV 5 6); and second, two executions of the code can be slower than even the CD method and require sub-
stantially more memory than the original code.were made—the first with g$p$ 5 5 and the second with

g$p$ 5 1. From these subdivisions, the methods are BB(6), (2) ADIFOR can be used successfully to create correc-
BB(5 1 1), BBFJ(6), and BBFJ(5 1 1). Execution of the tions to HD SD codes, where only relatively small, pre-
AD-enhanced code is started for all of these BB-type meth- viously undifferentiated parts of the original flow code
ods after the original code has produced the fully con- (such as turbulence-modeling subroutines) are differenti-
verged flow solution. (Recall that the fully converged flow ated via ADIFOR. These corrections can be very costly
solution is required at startup for the latter two methods.) with respect to the efficiency of the HD SD code, as seen

The ADII scheme also is subdivided into two methods, in Tables A.3 and A.4 for the turbulent-flow problem.
depending on the application of g$p$, to yield the ADII(6) However, the cost in computer memory for these correc-
and ADII(5 1 1) methods. For turbulent flow, the DDIITC tions is negligible, as shown in Table A.5.
method is further subdivided according to whether or not (3) For all applicable methods, the computational pen-
the option to freeze the turbulence-correction terms is alty associated with the turbulence-modeling terms (all
activated. The terminology DDIITCFR indicates that this constructed via ADIFOR) is significant and disproportion-
option is activated. (Ten frozen iterations are specified ately high. Detailed comparisons of the laminar and turbu-
for each iteration that updates these terms.) The notation lent timings (for a given method) shown in Table A.4 reveal
DDIITC indicates that the option is not activated. this penalty. The disproportionate cost is highest for the

Comparisons of the time (total CPU time) are shown most efficient method and also for the application where
in Table A.3 for both the laminar and turbulent sample g$p$ 5 1. The AD-correction for the turbulence-modeling
problems. Results are given in seconds, with all calculations terms in the DDIITC method represents an inefficient
performed on a Cray-YMP computer. All reported timings (g$p$ 5 1) application of ADIFOR; the inordinately large
do not include the cost of the initial flow solution. Note computational cost of this turbulence correction is
that a superscript * in the tables indicates an estimated thereby explained.
result. These estimates are based on results in Table A.4, (4) The ADII scheme is not as efficient computation-
which shows a comparison of the computational times ally as the HD IIM schemes, but it is more efficient than
(the CD and CDFJ methods are excluded) in CPU time all other methods tested. For example, depending on the
per iteration per linear system solved. The results from particular sample problem and application of g$p$, the
Table A.3 for the methods ADII(5 1 1), BB(5 1 1), and ADII scheme produces computational improvements by
BBFJ(5 1 1) have been separated in Table A.4 to compare a factor which varies from approximately 6 to 15 when
the individual effect of g$p$ 5 5 and g$p$ 5 1. comparisons are made with the simple BB scheme. Similar

The total memory requirements for the different meth- comparisons to the BBFJ scheme yield factors which vary
ods are compared in Table A.5, where the results are given from approximately 1.4 to 1.7. The most efficient ADII
in mega-words (Mw). No difference occurs in the results results were approximately 2 to 4 times more efficient than
for the laminar and turbulent examples in this table. The the results from the CDFJ scheme—even more efficient
computer memory requirements for the ADII scheme are compared with the CD method.
less than that for the BB approach, particularly if the origi- (5) The ADII scheme is not as easy to implement as
nal flow code is of the type that uses a large amount of the BB methods. For example, particular care must be
memory for storage of the terms of the LHS operator. taken to ensure that the contributions from the boundary
(Recall that these terms are not differentiated with the conditions are properly taken into account. However, when
ADII scheme, which results in a significant conservation compared with the HD approach, the ADII scheme can
of computer memory.) be implemented easily with very accurate results, even for

very advanced CFD codes. For example, the time required
2.4. Conclusions: FO SDs to develop the source code for some of these different

methods is estimated: HD IIM (DDII, AVII, etc.)—6 man-Conclusions based on the calculations for FO SDs are
months to 2 man-years, or even longer, depending on the
complexity of the flow code; ADII—about 1 man-week;(1) The HD IIM schemes, although presently the most
BB—about 1 man-day.efficient, are very difficult and time consuming to construct

accurately, even for relatively simple CFD codes. For more (6) The BBFJ strategy is no more difficult to imple-
complex codes with features such as turbulence modeling, ment than the simple BB approach, if the original flow
this approach is not feasible. ADIFOR is a reliable tool code is equipped with the FJ option. A very large increase
for the quick construction of accurate source code to evalu- is noted in the computational efficiency (compared with
ate all or parts of the SDs from complex CFD codes, but the simple BB strategy) when this option is activated. This

improvement was by an impressive factor which variedstraightforward BB application of ADIFOR to CFD codes
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from approximately 4 to 9, depending on the particular where Q9j ; dQ/dbj ; X9j ; dX/dbj . The FO adjoint-variable
example problem and application of g$p$. The BBFJ strat- (AV) approach is obtained by introduction of the adjoint-
egy is not as efficient as the ADII scheme with respect to variable vector Ai into the preceding equations to elimi-
computational time or memory. However, with relatively nate Q9j , and the result is
minor code modifications, the method possibly could be
made to function with nearly the efficiency of the ADII
scheme. Therefore, when the FJ option is available, the AF 9i; j ; dFi

dbj
5

­Fi

­X
X9j 1

­Fi

­bj
1 AT

i S­R
­X

X9j 1
­R
­bj
D , (3.3)

BBFJ scheme is the simplest method to implement which
also maintains reasonable efficiency (compared with the

Gi ; S­R
­QDT

Ai 1 S­Fi

­QDT

5 0. (3.4)CDFJ scheme in particular); otherwise, the necessary extra
effort should be invested to implement the ADII scheme.

(7) For the BB, BBFJ, and ADII schemes, the compu-
The following differential operator D( )/Dbk is definedtational cost in terms of CPU time and computer storage

for use in the derivations that followis very sensitive to the value selected for the parameter
g$p$, and this effect can vary significantly for different
machines. The significance of g$p$ is critical for a large D( )

Dbk
5

­( )
­Q

dQ
dbk

1
­( )
­X

dX
dbk

1
­( )
dbk

. (3.5)
NDV. On Cray computers with the aggressive compile
option, the choice of g$p$ 5 5 seems to provide the most
efficiency in terms of CPU time per iteration per linear Therefore, for example, comparison of this operator with
system solved, with a manageable increase in memory. Eqs. (3.1) and (3.2) yields, respectively,

(8) Currently, ADIFOR cannot be applied to construct
the AV method in total. This limitation is a serious consid- D(Fi)

Dbj
5 DF 9i; j ;

D(R)
Dbj

5 R9j . (3.6)eration, because great potential exists for efficiency with
the AV scheme when the number of aerodynamic input
variables of interest is much larger than is the number of

3.1.1. Method 1: DD.DD.output functions (i.e., when NDV is much larger than
NOF). An inspection of Eqs. (3.1) and (3.2) reveals explicit

dependencies in each on Q9j and X9j , in addition to Q, X,
and b. This dependency is expressed as3. SECOND-ORDER SENSITIVITY DERIVATIVES

(SO SDs)

dFi

dbj
; DF 9i; j 5 DF 9i; j(Q9j (b), X9j (b); Q(b), X(b), b) (3.7)3.1. Basic Equations and Incremental Iterative Forms

A brief derivation is presented of the basic equations of dR
dbj

; R9j 5 R9j (Q9j (b), X9j (b); Q(b), X(b), b). (3.8)second-order (SO) discrete aerodynamic sensitivity analy-
sis. The result is four methods, denoted as (1) DD.DD,
(2) AV.DD, (3) DD.AV, and (4) AV.AV. This notation

Differentiation of Eqs. (3.7) and (3.8) with respect to theroughly parallels the derivation and description given in
kth design variable bk yields, respectively,[23] for SO shape sensitivity analysis applied to linear heat-

conduction problems. In addition, the incremental iterative
forms are given for solving the additional large linear sys- d 2Fi

dbkdbj
5

­Fi

­Q
Q0j ,k 1

­Fi

­X
X0j ,k 1

D(DF 9i; j)
Dbk

(3.9)tems that result from Methods (1) and (2).
For convenience and subsequent notational clarity, the

key equations for the first-order (FO) derivatives are re- d 2R
dbkdbj

5
­R
­Q

Q0j ,k 1
­R
­X

X0j ,k 1
D(R 9j )

Dbk
5 0, (3.10)peated, where only the terms for the ith aerodynamic out-

put function (Fi) and for the j th design variable (bj) are
given here. Recall the FO direct differentiation (DD) ap-

where Q0j ,k ; d2Q/dbkdbj and X0j ,k ; d2X/dbkdbj.proach is
In the preceding differentiation, the chain rule is applied

term by term to Eqs. (3.7) and (3.8). Equations (3.1) and
DF9i; j ; dFi

dbj
5

­Fi

­Q
Q9j 1

­Fi

­X
X9j 1

­Fi

­bj
(3.1) (3.2) are used to produce the simplifications that result in

the first two terms of Eqs. (3.9) and (3.10), respectively.
Each of the third terms is very complex and has beenR9j ; dR

dbj
5

­R
­Q

Q9j 1
­R
­X

X9j 1
­R
­bj

5 0, (3.2)
simplified as a single term with the special differential
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operator defined by Eq. (3.5). A more complete expansion Differentiation of Eqs. (3.14) and (3.15) with respect to bk

yields, respectively,of these terms is provided in [20].
Clearly, X0j ,k is the SO grid-sensitivity term, which is

obtained in general (for geometric design variables only)
by twice differentiating the mesh-generation code. These d 2Fi

dbkdbj
5 S­R

­X
X9j 1

­R
­bj
DT

A9i;k 1 S­Fi

­X
1 AT

i
­R
­XDX0j,kSO grid-sensitivity terms vanish in the example problems

of the present study because of the linear nature of the
particular remesh/grid-sensitivity scheme used. (See Refs.

1
D(AF 9i;j)

Dbk
, (3.16)[1, 14].)

In all subsequent discussions, it is assumed that the com-
plete Hessian matrix d2Fi /db2 is desired for each output dGi

dbk
5 S­R

­QDT

A9i;k 1
D(Gi)
Dbk

5 0, (3.17)function Fi . The DD.DD method requires a priori knowl-
edge of the complete Q9 matrix, which is obtained via
NDV solutions of the FO DD system (Eq. (3.2)). (Recall

where A9i;k ; dAi/dbk .NDV is the number of aerodynamic input variables of
In the preceding differentiation, the chain rule is appliedinterest; NOF is the number of aerodynamic output func-

to Eqs. (3.14) and (3.15). Equations (3.3) and (3.4) aretions.) Thereafter, a maximum of (NDV)2 solutions of the
used to produce the simplifications that result in the firstSO system (Eq. (3.10)), is required to determine all
two terms of Eq. (3.16) and the first term of Eq. (3.17).Q0j,k . However, if the identity Q0j,k 5 Q0k, j is exploited com-
Each of the last terms is very complex and has beenputationally, then the minimum number of SO solutions
simplified as a single term with the operator defined byis [(NDV)2 1 NDV]/2. Thus, the DD.DD method requires
Eq. (3.5). (See Ref. [20] for a more complete expansiona minimum total number of NDV 1 [(NDV)2 1 NDV]/2
of these terms.)solutions of very large linear systems.

The AV.DD method requires a priori knowledge of theThe coefficient matrices of the FO DD system and
complete Q9 and A matrices, which are obtained via NDVthe SO DD.DD system are identical. Thus, when these
solutions of the FO DD system (Eq. (3.2)) and NOF solu-systems are cast in incremental iterative form, both could
tions of the AV system (Eq. (3.4)), respectively. Thereaf-be solved with the identical approximate left-hand-side
ter, NDV 3 NOF solutions of the SO system (Eq. (3.17))(LHS) operator and algorithm that is also used to solve
are required to determine all A9i;k . The AV.DD methodthe nonlinear flow equations. The IIM for solving the
thus requires a total of NDV 1 NOF 1 (NDV 3 NOF)SO Eq. (3.10) is
solutions of very large linear systems.

The coefficient matrices of the FO AV system and thep
SO AV.DD system are identical. Thus, when these systems2

­R
­Q

DQ0 m
j ,k 5 R0m

j ,k (3.11)
are cast in incremental iterative form, both could be solved
using the identical approximate LHS operator and algo-

Q0m11
j,k 5 Q0m

j,k 1 DQ0m
j,k ; m 5 1, 2, 3, ..., (3.12) rithm (the transpose of that which is also used to solve the

nonlinear flow equations). The IIM for solving the SO Eq.
(3.17) iswhere

p
2 S­R

­QDT

DA9m
i;k 5 G9m

i;k , (3.18)R0m
j,k 5

­R
­Q

Q0m
j,k 1

­R
­X

X0m
j,k 1

D(R9j )
Dbk

. (3.13)

A9m11
i;k 5 A9m

i;k 1 DA9m
i;k ; m 5 1, 2, 3, ..., (3.19)

3.1.2. Method 2: AV.DD.

An inspection of Eq. (3.3) reveals explicit dependencies where
on Ai and X9j . In Eq. (3.4), however, explicit dependence
on Ai occurs, but not on X9j . Both equations depend explic-

G9m
i;k 5 S­R

­QDT

A9m
i;k 1

D(Gi)
Dbk

. (3.20)itly on Q, X, and b. These complete dependencies are
expressed as

3.1.3. Method 3: DD.AV
dFi

dbj
; AF 9i; j 5 AF 9i; j (Ai (b), X9j (b); Q(b), X(b), b), (3.14) This method is derived by introducing an arbitrary ad-

joint-variable vector into the DD.DD method to combine
Eqs. (3.9) and (3.10). The adjoint-variable vector is speci-Gi 5 Gi (Ai (b); Q(b), X(b), b). (3.15)
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fied so that the resulting coefficient of Q0j,k vanishes. The The AV.AV method requires knowledge of the complete
Q9 and A matrices, which are obtained from solving Eqs.resulting DD.AV method
(3.2) and (3.4), respectively. Thus, the AV.AV method
requires a total of NDV 1 NOF solutions of large systems
of linear equations. Again, only the systems for FO deriva-

d 2Fi

dbkdbj
5 S­Fi

­X
1 AT

i
­R
­XDX0j,k 1

D(DF 9i;j)
Dbk

(3.21)
tives are solved.

3.1.5. Discussion1 AT
i

D(R9j )
Dbk

.

An analysis was made to determine which of the preced-
ing four methods would be potentially the least costly com-The adjoint-variable vector Ai in the derivation of Eq.
putationally by considering the total number of large simul-(3.21) is identical to that of the FO AV method and is
taneous linear systems that must be solved to calculate thefound by solving the FO Eq. (3.4).
complete Hessian matrix d 2Fi /db2 for all Fi . The conclu-The DD.AV method requires no simultaneous solutions
sions of this study are:of large systems of linear equations that involve SO terms

(in contrast with the previous two schemes). An inspection (1) Methods (3) and (4) are computationally equiva-
of Eq. (3.21) reveals that the method requires knowledge lent and are henceforth known as Method (3/4).
of the complete Q9 and A matrices. (Of course, Q9 and A (2) Method (3/4) is unconditionally less costly than
are obtained via NDV solutions of the FO DD system (Eq. Method (2). Therefore, either Method (1) or Method
(3.2)) and NOF solutions of the FO AV system (Eq. (3.4)), (3/4) should be selected, depending on conclusion (3).
respectively.) Thus, the DD.AV method requires a total

(3) If the equality Q0j,k 5 Q0k, j is fully exploited, thenof NDV 1 NOF solutions of large simultaneous systems
Method (1) is less costly than Method (3/4) whenof linear equations, where only the systems for the FO
NDV 3 (NDV 1 1) is less than 2 3 NOF. If the samederivatives are solved.
equality is not exploited, then Method (1) is less costly
than Method (3/4) when (NDV)2 is less than NOF.3.1.4. Method 4: AV.AV

This method is derived by introducing a new, arbitrary 3.2. Applications of ADIFOR
adjoint-variable vector into the AV.DD method to com-

In this section, various procedures are outlined wherebybine Eqs. (3.16) and (3.17). This new adjoint-variable vec-
AD might be applied effectively to assist in computing thetor is specified so that the resulting coefficient of A9i;j van-
SO aerodynamics SDs. Many of the terms in each of theishes. The resulting AV.AV method is
preceding four methods are exceedingly complex. In par-
ticular, this applies to the large, complex groups of terms
that are symbolized compactly with the operator D( )/Dbk .d 2Fi

dbkdbj
5 S­Fi

­X
1 AT

i
­R
­XDX0j,k 1

D(AF 9i;j)
Dbk

(3.22)
Practically speaking, differentiation and coding by hand
to construct these terms is impossible, even for the less
complicated CFD codes (e.g., 2D Euler codes). Simply1 (Q9j )T D(Gi)

Dbk
.

stated, without AD the equations for SO aerodynamic
sensitivity analysis cannot be constructed.

The adjoint-variable vector (which results in the disappear-
3.2.1. Noniterative Applications for Method (3/4)ance of terms that involve A9i;j) is seen in the derivation of

(DD.AV)/(AV.AV)Eq. (3.22) to be Q9j , which is found by solving the FO DD
(Eq. 3.2)). Detailed demonstration of this result is given Fortunately, ADIFOR is ideally suited for the quick and
in [20]. reliable generation of source code to accurately evaluate

No computational advantage is associated with the the required SO terms without an excessive expansion of
AV.AV method over the DD.AV method. In [20], these the computer memory. For example, the ADIFOR-
two schemes are shown to be term-by-term equivalent. assisted construction of the SO Method (3) (DD.AV, Eq.
That is, (3.21)) involves creation of a source code that evaluates

D(R9j )/Dbk. The source code can be created easily by the
straightforward application of ADIFOR to an existing sub-

(Q9j )T D(Gi)
Dbk

5 AT
i

D(R9j )
Dbk

(3.23) routine that evaluates R9j . This AD application is com-
pletely analogous to the AD-assisted creation of source
code that evaluates D(R)/Dbj (which is R9j ) from an ex-D(AF 9i;j)

Dbk
5

D(DF 9i;j)
Dbk

. (3.24)
isting subroutine that evaluates R. (Recall that the creation
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of source code via ADIFOR to evaluate R9j was an im- be constructed from start to finish via the present version
portant requirement in the success of the FO ADII of ADIFOR. However, an important disadvantage also
scheme.) Similar remarks, of course, apply in the AD- exists: in contrast with the SO Method (3/4), large linear
assisted creation of D(DF 9i;j)/Dbk for use in Eq. (3.21). systems must be iteratively solved for the SO Q0 terms.
Therefore, the fact that the a priori calculation of the FO Most of the remainder of this section focuses on ADIFOR-
Q9 matrix is required by all four SO methods (including assisted black-box (BB) and/or IIM implementations of
Method (3)) is somewhat fortuitous, because this ensures this SO method (DD.DD). The discussion and resulting
that the FO source code to evaluate R9j (and DF 9i;j) will be methods are analogous to that seen earlier for ADIFOR-
available for further use in the AD-assisted creation of the assisted implementations of the FO DD scheme.
SO terms. In principle, SO aerodynamic SDs can be obtained by

Except for the terms X0j,k and Ai , the remaining terms a BB application of the present version of the AD tool
in the SO Eq. (3.21) are taken as is from the same FO (ADIFOR 1.0) to an AD-enhanced version of the original
equations that are used to calculate all Q9j . The term flow code (called the BB.BB method). However, the
X0j,k would be produced by twice differentiating the grid- BB.BB scheme can also be obtained by applying a future
generation code, and all Ai must be obtained by solving first new version of the AD tool (ADIFOR 2.X) to the original
the FO AV equations. After the required FO equations for flow code. This advanced version of ADIFOR is presently
the required Q9 and A are solved, the SO Method (3) being developed with the new, optional capability of pro-
becomes a noniterative, computationally efficient scheme viding SO derivatives. For advanced CFD codes, the
for computing SO SDs, where all required SO terms are BB.BB method may be exceedingly inefficient computa-
easily constructed via straightforward applications of tionally, for reasons that are discussed subsequently. In
ADIFOR to key parts of the existing FO source code. addition, the memory requirements could become prohibi-
The discussion of SO Method (3) in the preceding two tively large. Therefore, this approach was abandoned early
paragraphs is easily extended to the SO Method (4) be- in the present study.
cause, as noted previously, the two methods (Method A convenient symbolic representation of the BB.BB
(3/4)) are equivalent. scheme is obtained by differentiating Eq. (2.16) with re-

The requirement to first solve the FO AV equations is spect to b to yield
an important consideration for each SO method except
Method (1) (DD.DD). Unique computational difficulties

Q0n11 5 Q0n 2 PnR0n 2 2P9nR9n 2 P0nRn; n 5 1, 2, 3, ....exist (discussed earlier in greater detail) which are associ-
(3.25)ated with the use of ADIFOR to construct key parts of

the AV methods. Thus, these difficulties are transmitted
to these SO methods. This concern speaks to SO Method In contrast, the IIM for the SO Method (1) (DD.DD) can
(3/4) directly, because it was concluded earlier that this be represented compactly by combining Eqs. (3.11) and
method is unconditionally more efficient than SO Method (3.12). The result is (by dropping the subscripts j, k)
(2) (AV.DD).

For the particular combination of NDV 5 6 with
Q0m11 5 Q0m 2 PR0m; m 5 1, 2, 3, .... (3.26)NOF 5 3 (which is applicable to the sample problems of

this study), the SO Method (3/4) would be about 3 times
less costly than the remaining choice Method (1); this pro- Clearly, Eqs. (3.25) and (3.26) are symbolically equiva-
jection is based on the previous discussion, which considers lent only at convergence of the flow equations and the
the comparative total number of large linear systems that FO sensitivity equations. Computationally, however, Eqs.
must be iteratively solved (27 large system solutions for (3.25) and (3.26) are by no means equivalent; the potential
Method (1), compared to 9 for Method (3/4)). The actual

for greater efficiency is with Eq. (3.26). This potential is
implementation of the SO Method (3/4) is not included in

seen from the previous discussion of the FO BB application
the present study but is a topic of ongoing work.

of AD, where Eqs. (2.16) and (2.17) are compared. The
potential for computational inefficiency is even greater

3.2.2. Black-Box and Incremental Iterative Applications now than previously for Eq. (2.16) because of the addi-
for Method (1) (DD.DD) and Method (2) (AV.DD) tional presence of the unwanted term P0nRn in Eq. (3.25)

and because the unwanted term 2P9nR9n represents a dou-The SO Method (1) has been projected to be less costly
ble computational evaluation of P9nR9n.than Method (3/4) for certain combinations of NDV and

It is suggested that ADIFOR can be used to assist inNOF (which have been specified). An advantage unique
the creation of the potentially efficient scheme representedto the SO Method (1) is that no adjoint-variable equations

are to be solved. Thus, in principle, the entire scheme can by Eq. (3.26) in a manner that is completely analogous to
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the implementation of the AD-assisted FO method, ADII. For completeness, a final SO scheme is introduced here,
Thus, the resulting method, known here as the ADII.SO called the AVII.BB method, which can be constructed via
scheme, involves the AD of all terms on the right-hand the BB application of ADIFOR to the source code for
side (RHS) only of Eq. (2.9), which is the residual R9, the FO AVII scheme. The AVII.BB scheme would yield
of the linear FO sensitivity equations (Eq. (2.4)). These inaccurate SO SDs for the turbulent example problem
differentiated terms are then judiciously assembled for ef- because the full AD-generated correction of the turbu-
ficient operation on the RHS of the identical approximate lence-modeling terms could not be added to the FO AVII
LHS operator and algorithm that were also used to effi- scheme. Symbolically, the AVII.BB scheme is represented
ciently solve the nonlinear flow and the linear FO sensitiv- by combining Eqs. (2.12) and (2.13) and differentiating
ity equations. with respect to b to yield

The ADII.SO scheme is potentially the most efficient
implementation of the SO Method (1) (DD.DD) that is

A9m11 5 A9m 2 (P)TG9m 2 (P9)TGm; m 5 1, 2, 3, ....feasible, because hand-differentiated (HD) construction of
the scheme is too complex to be practical. It represents the (3.28)
only true SO IIM which, in principle, can be constructed in
total with the present various of ADIFOR. (Recall that

In contrast, a similar representation of the IIM for thethe SO Methods (2) and (3/4) require construction of the
SO Method (2) (AV.DD) is (recall Eqs. (3.18) and (3.19))FO AV equations, in which the construction of some terms

is not feasible via ADIFOR.) Actual implementation of
the ADII.SO scheme is not included in the present study,

A9m11 5 A9m 2 (P)TG9m; m 5 1, 2, 3, .... (3.29)but it is a topic of ongoing work.
An alternative AD-assisted SO strategy is the BB appli-

cation of ADIFOR to the scheme represented by Eq. Comparisons of the two schemes represented by Eqs.
(2.17). After differentiation with respect to b, the represen- (3.28) and (3.29) yield conclusions with respect to computa-
tation becomes tional efficiency that are analogous to those made pre-

viously for other FO and SO methods that employ BB
Q0m11 5 Q0m 2 PR0m 2 P9R9m; m 5 1, 2, 3, .... (3.27) applications of ADIFOR.

The AVII.BB scheme, which essentially is an AD-as-
sisted form of the SO Method (2) (AV.DD), is not pursuedFrom the previous discussions of the analogous FO Eqs.
further in this study because the SO Method (2) is always(2.16) and (2.17), Eq. (3.27) clearly represents a significant
less efficient than the SO Method (3/4) (DD.AV/AV.AV)improvement over Eq. (3.25) with respect to computational
as demonstrated earlier.efficiency. However, Eq. (3.27) will also surely be less effi-

cient than the true SO IIM (Eq. (3.26)). Symbolically (but
not computationally), the two are equivalent only at con- 3.3. Computational Results: SO SDs
vergence when R9 vanishes.

The FO SD results for the previous sample problemsThe preceding method is constructed by the BB AD of
are extended here to include calculation of the completethe source code which computes FO SDs via an IIM (except
Hessian matrices d 2CL/db2, d 2CD/db2, and d 2CM/db2.the AVII scheme, for the present application). In principle,
These SO SDs are calculated with different methods, andthis code could be the source code for the previously dis-
the results are compared on the basis of accuracy andcussed ADII scheme. The source code for the HD DDII
computational time and memory. For the methods tested,method was selected in the sample problems, however,
considerable CW could have been saved by taking advan-because it was more efficient. Results of the SO method
tage computationally of the symmetry of the Hessianare known here as the DDII.BB scheme; by extension of
matrices. However, this was not done here in order tothis terminology, the FO DDIITC and DDIITCFR meth-
exploit this symmetry as an additional internal accu-ods become the SO DDIITC.BB and DDIITCFR.BB
racy check.schemes, respectively. By considering the latter two

schemes, it is interesting to note that part of the original
source code differentiated by ADIFOR is that which calcu- 3.3.1. Accuracy Comparisons
lates the turbulence-modeling correction terms (i.e., those

The SO SD Hessian matrices are calculated for both theterms that were originally created by ADIFOR are then
laminar and turbulent example problems with two basicsuccessfully differentiated by ADIFOR). This is the only
methods known here as QA.CD and DDII.BB. The latterexample in the present work where this was actually at-

tempted. method has been described previously herein. More pre-
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cisely specified, the DDII.BB scheme is applied to the Prior to execution of the AD-enhanced code for the
DDII.BB-type methods, the FO solution for the completelaminar example, and the DDIITC.BB scheme is applied

to the turbulent example. Q9 matrix should be calculated first as input for the subse-
quent SO SD calculations. This initial Q9 is calculated withThe QA.CD method can be described as a hybrid quasi-

analytical/central finite-difference scheme, which is imple- the DDII-type methods (i.e., the original code from which
the AD-enhanced SO code was created). An initial totalmented in the following manner:
of six linear systems is solved; a reduction of 10 OM in

(1) Recall that, for the FO CD method, 12 machine- the error of each was specified. Subsequent execution of
zero-converged solutions of the nonlinear flow equations the AD-enhanced code produces the solutions of 36 linear
were generated: two perturbations for each design variable, systems for the complete SO SDs Q0; an average reduction
a forward and a backward perturbation of Dbj 5 of 8 OM in the error of each system is specified in this
65.0E 2 6 3 bj . case. These tight convergence tolerances should ensure

(2) For each of the 12 perturbed nonlinear flow solu- accurate results, but at great expense in the computational
tions, the complete set of FO SDs were calculated using the timing comparisons presented subsequently.
FO HD QA (i.e., first-order, hand-differentiated, quasi- In addition to the 36 solutions for the SO terms, execu-
analytical) code. Specifically, the DDII and DDIITCFR tion of the AD-enhanced code results in the solution of six
methods were used for the laminar and turbulent examples, linear systems for the FO SDs Q9. This is a computationally
respectively. A reduction of 10 OM or better in the error wasteful, repeated solution for these terms, but their calcu-
of each linear system is specified; 72 linear systems are lation cannot be avoided here because it is the function of
solved for those FO SDs. the original code. The initial solution for Q9 as input to the

AD-enhanced code, discussed previously, can be avoided(3) The complete SO Hessian matrices were calculated
under certain conditions. However, such avoidance maywith central finite-difference approximations using the QA
not necessarily be efficient with respect to convergenceFO derivatives calculated via that of the preceding dis-
rates and computer memory. This implementation is al-cussion.
ways possible and is also straightforward to invoke if the

Thus, the QA.CD method for the SO SDs performs the original code solves the FO sensitivity equations concur-
first differentiation exactly, and the second differentiation rently; the initial input of the complete Q9 matrix is
via a CD approximation. replaced directly by the dynamic calculation of these

The SO SDs that were calculated via the QA.CD method same terms, because they also evolve concurrently during
are presented in Tables B.1a and B.1b (in Appendix B) the SO SD calculations. The original code used here
for the laminar and turbulent sample problems, respec- solves the FO sensitivity equations sequentially, however.
tively. In these results, the actual numerical values of the Consequently, avoidance of the initial Q9 solution be-
derivatives are given for the main-diagonal and above- comes a more complicated issue; in some cases where
main-diagonal terms. The results presented for the below- the complete Hessian matrices are not calculated, it is
main-diagonal terms are SD ratios, where each result not even possible.
shown has been divided by its equivalent above-main-diag- The complete set of terms on the main diagonal of the
onal term. (Clearly this calculation is an internal accuracy Hessian matrices can be calculated via the CD.CD method
check of all the off-main-diagonal terms.) As expected, (i.e., the pure central finite-difference approximation of
these below-main-diagonal SD ratios are all unity to at these terms) with the initial flow solution and the 12 per-
least three and usually four or more significant digits. In turbed flow solutions calculated previously for application
these tables, the quasi-analytical first differentiation is with in the FO CD and SO QA.CD schemes. An approximation
respect to bj (shown horizontally), followed by the CD of the complete set of cross-derivative terms in this manner
approximate second differentiation with respect to bk is also possible, of course, but it would require many addi-
(shown vertically). tional perturbed flow solutions. Comparison of the results

The SO results that were generated via the DDII.BB for these terms from the applications of the CD.CD and
method are shown for the laminar example in Table B.2a. QA.CD methods is presented in Tables B.3a and B.3b
Similar results with the DDIITC.BB scheme for the for the laminar and turbulent examples, respectively. The
turbulent example are shown in Table B.2b. All of these results shown here are SO SD ratios, where the reported
results are given as SO SD ratios, where the numerical CD.CD calculations have been normalized by the respec-
value of each result has been normalized by the numerical tive QA.CD results of Tables B.1a and B.2b.
value of the respective term calculated via the QA.CD The two tables, B.3a and B.3b, show poor agreement
method. These tables clearly show the excellent among the results of these two methods. This discrepancy
agreement among the results obtained by these two is attributed to inaccuracy in the CD.CD calculations. It

occurs whenever a finite-difference perturbation is toomethods, as expected.
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small, the consequence of which is a necessity for accuracy solution is required input at the outset of the execution of
in the function evaluations that is beyond the capability the AD-enhanced code for the SO SDs.) Table B.5 shows
of the finite-arithmetic machine. With the present pertur- comparisons (excluding the QA.CD and QA.CD(FJ)
bation Dbj 5 65.0E 2 6 3 bj , this machine limitation was methods) of CPU time per iteration per SO linear system
not exceeded for the accuracy desired in the FO CD results. solved. The cost of the initial FO solution for Q9 is not
For the SO CD.CD results, (Dbj)2 is now the divisor in included in the results of this table. As described previously
the finite-difference expressions. Compared to the FO CD for the FO results, the individual effects of g$p$ 5 5 and
approximations, six or more additional significant digits of g$p$ 5 1 are shown in Table B.5. Finally, the total com-
accuracy are required in the function evaluations to achieve puter memory requirements for the different methods are
the first digit of accuracy in the SO CD.CD results (with this compared in Table B.6.
perturbation). Of course, significant competing accuracy
considerations emerge as the perturbation size is progres- 3.4. Conclusions: SO SDs
sively increased. Larger perturbations were not tried for

Conclusions based on the calculations for the SO SDsthis demonstration because of the inordinate amount of
are:CPU time required to produce SO derivatives, and the

lack of any guarantee that the CD.CD results would be (1) The calculation of SO aerodynamic SDs by a pure
any better. Therefore, when the simple finite-difference finite-difference scheme is much more sensitive to the se-
method is applied, the selection of a good numerical pertur- lection of a proper perturbation size than is the calculation
bation size becomes progressively more difficult for higher- of the FO SDs. This difficulty is noted in addition to the
order derivatives. extreme computational cost of the method, particularly if

the complete Hessian matrices (with cross-derivatives) are
3.3.2. Computational Time and Memory Comparisons computed. These difficulties for the SO derivatives can be

mitigated to a large extent if the FO derivatives, at least,In this section, the SO methods of the previous section
are calculated via one of the HD or AD methods dis-are further subdivided in a manner similar to that which
cussed previously.was done previously for the various FO methods that were

tested. As before, these subdivisions have no impact on (2) The good agreement that is seen in the AD-assisted
the SDs that are calculated but can greatly impact the SO results (when compared with the results from the
computational time and memory requirements. QA.CD method) confirms that ADIFOR can be success-

The QA.CD method is subdivided into two methods, fully used as a tool to construct and implement the SO
depending on whether or not the FJ option (previously methods from source code that evaluates the FO deriva-
discussed) is activated. This refers to the first phase of the tives. In principle, the source code for FO derivatives can
method only, where the 12 nonlinear flow solutions are be constructed either in whole or in part by either hand
obtained. When this option is active, the method becomes differentiation or AD. Without ADIFOR, the SO schemes
the QA.CD(FJ) scheme; the method remains the simple could not be implemented even for simple CFD codes.
QA.CD scheme when the option is inactive. Construction of the source code by hand would not be

The DDII.BB and DDIITC.BB methods, including the feasible to evaluate the extremely large number of very
previously described DDIITCFR.BB efficiency option that complex SO terms that are involved.
is associated with the latter method, are subdivided into

(3) The previously discussed limitations of ADIFORthe following six schemes: DDII.BB(6), DDII.BB(5 1 1),
when the FO AVII methods are constructed carries overDDIITC.BB(6), DDIITC.BB(5 1 1), DDIITCFR.BB(6),
at least indirectly in all the SO methods except Methodand DDIITCFR.BB(5 1 1). These subdivisions are made
(1) (DD.DD) because the other three SO methods requirebased on different applications of the parameter g$p$ in
the FO AV equations to be solved. This requirement isthe AD-enhanced code, as described previously for the
significant because Method (3/4) is potentially by far theFO results.
most efficient method for particular combinations of NDVComparisons of total CPU times are shown in Table
and NOF.B.4 for the laminar and turbulent sample problems. All

(4) As expected, the computational results, althoughreported timings do not include the cost of the initial flow
accurate, were very costly in terms of CPU time andsolution. For the QA.CD and QA.CD(FJ) schemes, the
(for the DDII.BB-type methods) computer memory. Thecost for the 12 perturbed nonlinear flow solutions and the
possibility exists that these computational costs can be72 linear system derivative solutions is included in the
significantly reduced, however, as described in the subse-reported timings. For the AD-assisted DDII.BB-type
quent conclusions. This possibility is also a topic ofschemes, the computational cost is included for initially

solving the FO equations for all Q9. (Recall that this FO ongoing study.
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(5) For the particular combination of NDV and NOF tion of the best features of the other methods. Although
it is not yet as efficient as the HD schemes, it is morestudies here, Method (3/4) is potentially far more efficient

than the methods actually tested. It is projected to cost efficient than all other methods tested—substantially more
efficient than the simple BB and central finite-differenceonly slightly more than the cost of solving the large systems

of equations for the FO DD and AV schemes—a total (CD) approaches. The ADII method is not quite as easy to
implement as the BB approach. However, when comparedof only nine large systems. This cost, taken from the

HD FO results, was a total of only 583 and 1014 CPU with the HD methods, the ADII scheme can be imple-
mented quickly, reliably, and with very accurate results,seconds for the laminar and turbulent-flow examples,

respectively. The results for the turbulent-flow example even for very complex computational fluid dynamics
(CFD) codes. The ADII scheme also requires less expan-would have inaccuracies traced to the FO AVII scheme

(which could not be corrected via AD for all of the sion of computer memory than some of the other AD-
assisted methods. When compared with the best CDturbulence-modeling terms).
method, the most efficient implementation of the ADII(6) In contrast with the nine large system solutions that
scheme improved computational efficiency by a factor ofwould be required for Method (3/4), the DDII.BB type
approximately 3.6 for the laminar example and 1.7 for theof implementation of Method (1) included the solution of
turbulent example. Additionally, the memory increase was42 large systems—six for FO derivatives and 36 relatively
about 1.6 times that of the original flow code. The computa-inefficient (as discussed subsequently) solutions for the SO
tional penalty which is associated with the AD-assistedderivatives. Note that by simply taking advantage compu-
differentiation of the turbulence-modeling terms is signifi-tationally of the symmetry of the Hessian matrices, the
cant and disproportionately large for all applicable meth-number of solutions for SO derivatives could be reduced
ods; this requires additional examination for possible im-from 36 to 21.
provements.

(7) As discussed previously, the DDII.BB-type ap- A complete procedure has been described by which the
proach is not the most efficient implementation of Method discrete second-order (SO) aerodynamic SDs can be calcu-
(1) because it is not a true IIM. It is believed that the lated from modern CFD codes. The assistance of AD is
true SO IIM implementation, known here as the ADII.SO required for the implementation, because of the extremely
approach, would be the most efficient feasible implementa- large number of very complex terms that are required.
tion of Method (1). The improvement in CPU time and Initially, four SO methods were presented. This selection
memory requirements that results from the ADII.SO im- was then reduced effectively to only two, because SO
plementation (compared to the DDII.BB-type approach) Methods (3) and (4) were shown to be equivalent and
is projected to be roughly proportional to those improve- unconditionally more efficient than Method (2). Thereaf-
ments seen in a comparison of the two FO methods ADII ter, the choice between either Method (1) or Method
and BBFJ (that is, ADII.SO could be possibly 40%–70% (3/4) is dependent upon the relative size of NDV and NOF
faster than DDII.BB). (i.e., number of design variables and number of output

(8) The computational efficiency, in terms of CPU functions, respectively); a large NOF favors Method (1).
time and memory, is affected greatly by the selection The specific criterion to be used for this selection was
of the parameter g$p$ in the AD-assisted SO schemes. defined herein.
This effect is similar to that noted previously in the The SO Method (3/4) requires that the large systems
FO results. for the FO DD and AV schemes are solved first. Thereaf-

ter, the computation of the SO SDs is noniterative (i.e.,
additional simultaneous solutions of large systems are not4. SUMMARY AND FINAL CONCLUSIONS
needed). Method (1) requires that the large systems for
the FO DD scheme are solved first; the FO AV systemsA number of different approaches for computing first-

order (FO) aerodynamic sensitivity derivatives (SDs) have are not solved, which can be a significant advantage over
Method (3/4) for reasons that have been detailed herein.been tested, and the results have been compared on the

basis of accuracy, computational time, and computer mem- Thereafter, the SO SDs are computed by solving large
systems for SO terms. However, these equations and theory requirements. The methods represent a broad spec-

trum of choices: finite-difference methods, hand-differenti- efficient solution methods for them are analogous to those
for the FO DD method. The computational results forated (HD) incremental iterative method (IIM) schemes,

and black-box (BB) automatic differentiation (AD) meth- the SO SDs were highly accurate, which confirms that
ADIFOR is a reliable tool in constructing these SO meth-ods. In addition, combinations and variations of these

are possible. ods. Significantly improved results with respect to compu-
tational efficiency for SO SDs are expected in the futureThe automatically differentiated incremental iterative

(ADII) scheme stands out as a very well-rounded combina- from ongoing work.
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APPENDIX A: TABLES FOR FIRST-ORDER RESULTS

TABLE A.1

First-Order Sensitivity Derivatives and Sensitivity-Derivative Ratios; Laminar Example

Design variable
Solution method bj

dCL

db
dCD

db
dCM

db

Central differences method (CD) T 21.392E 1 00 12.019E 2 01 11.805E 2 01
SDCD C 16.583E 1 00 17.583E 2 02 22.240E 1 00

L 21.154E 2 02 15.540E 2 05 22.122E 2 02
a 16.122E 1 00 19.181E 2 02 23.166E 2 02

My 15.438E 2 03 11.628E 2 02 24.732E 2 03
Re 15.958E 2 06 24.912E 2 06 26.563E 2 07

Direct differentiation incremental iterative T 1.0000 1.0000 1.0000
method (DDII) C 1.0000 1.0000 1.0000

L 1.0000 1.0009 1.0000SDDDII

SDCD a 1.0000 1.0000 1.0004
My 1.0000 1.0000 1.0000
Re 1.0000 1.0000 1.0000

Adjoint-variable incremental iterative T 1.0000 1.0000 1.0000
method (AVII) C 1.0000 1.0000 1.0000

L 1.0000 1.0009 1.0000SDAVII

SDCD a 1.0000 1.0000 1.0004
My 1.0000 1.0000 1.0000
Re 1.0000 1.0000 1.0000

Automatic differentiation in incremental T 1.0000 1.0000 1.0000
iterative form (ADII) C 1.0000 1.0000 1.0000

L 1.0000 1.0009 1.0000SDADII

SDCD a 1.0000 1.0000 1.0004
My 1.0000 1.0000 1.0000
Re 1.0000 1.0000 1.0000

Automatic differentiation, ‘‘black box’’ T 1.0000 1.0000 1.0000
method (BB) C 1.0000 1.0000 1.0000

L 1.0000 1.0009 1.0000SDBB

SDCD a 1.0000 1.0000 1.0004
My 1.0001 1.0000 1.0000
Re 1.0000 1.0000 1.0000
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TABLE A.2

First-Order Sensitivity Derivatives and Sensitivity-Derivative Ratios; Turbulent Example

Design variable
Solution method bj

dCL

db
dCD

db
dCM

db

Central differences method (CD) T 17.919E 2 01 12.744E 2 01 24.153E 2 01
SDCD C 12.063E 1 01 16.776E 2 01 25.770E 1 00

L 11.108E 2 01 21.174E 2 02 25.350E 2 02
a 11.300E 1 01 14.346E 2 01 26.328E 2 01

My 12.040E 1 00 11.969E 2 01 25.972E 2 01
Re 21.185E 2 09 22.829E 2 10 11.497E 2 10

Direct differentiation and adjoint-variable incremental T 0.2874 0.9672 0.7523
iterative methods, uncorrected (DDII and AVII) C 0.9415 0.9609 0.9560

L 1.2077 0.9806 1.0447SDDDII

SDCD
and

SDAVII

SDCD a 0.9221 0.9663 0.7388
My 0.8690 0.9754 0.9093
Re 23.4966 1.7251 22.9367

Direct differentiation incremental iterative method, corrected T 1.0000 1.0000 1.0000
(DDIITC) C 1.0000 1.0000 1.0000

L 1.0000 1.0000 1.0000SDDDIITC

SDCD a 1.0000 1.0000 1.0000
My 1.0000 1.0000 1.0000
Re 1.0000 1.0000 1.0000

Automatic differentiation in incremental iterative form (ADII) T 1.0000 1.0000 1.0000
C 1.0000 1.0000 1.0000SDADII

SDCD L 1.0000 1.0000 1.0000
a 1.0000 1.0000 1.0000

My 1.0000 1.0000 1.0000
Re 1.0000 1.0000 1.0000

Automatic differentiation, ‘‘black box’’ method (BB) T 1.0000 1.0000 1.0000
C 1.0000 1.0000 1.0000SDBB

SDCD L 1.0000 1.0000 1.0000
a 1.0000 1.0000 1.0000

My 1.0000 1.0000 1.0000
Re 1.0000 1.0000 1.0000
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TABLE A.3

Computational Timing Comparisons: Total CPU
Time (Seconds)

Method Laminar Turbulent

CD 9,800a 12,000a

CDFJ 2,962 4,057
AVII 324 300
DDII 259 590
DDIITC Not applicable 2,000a

DDIITCFR Not applicable 714
ADII(6) 1,722 4,879
ADII(5 1 1) 820a 2,300a

BB(6) 14,000a 27,000a

BB(5 1 1) 12,000a 24,000a

BBFJ(6) 2,696 6,964
BBFJ(5 1 1) 1,400a 3,600a

a Projected result based on timings from Table A.4.

TABLE A.4

Computational Timing Comparisons: CPU Time
(Seconds)/Iteration/Linear System Solved

Method Laminar Turbulent

AVII 0.06196 0.06293
DDII 0.06325 0.06314
DDIITC Not applicable 0.2285
DDIITCFR Not applicable 0.07996
ADII(6) 0.4196 0.5432
ADII(5)\ADII(1) 0.1705\0.3453 0.2096\0.5107
BB(6) 3.448 3.570
BB(5)\BB(1) 2.033\8.010 2.050\8.096
BBFJ(6) 0.7694 0.9046
BBFJ(5)\BBFJ(1) 0.3039\0.8827 0.3469\1.046

TABLE A.5

Total Computer Memory Comparisons

Method Total memory (Mw)

CD, CDFJ 5.27
DDII, AVII, DDIITC, DDIITCFR 7.39
ADII(6) 9.07
ADII(5)\ADII(1) 8.36\5.09
BB(6), BBFJ(6) 34.65
BB(5), BBFJ(5)\BB(1), BBFJ(1) 29.94\10.27
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APPENDIX B: TABLES FOR SECOND-ORDER RESULTS

TABLE B.1a

Second-Order Sensitivity Derivatives and Sensitivity-Derivative Ratios: QA.CD Method; Laminar Example

bk\bj T C L a My Re

T 22.280E 1 01 28.390E 1 01 26.579E 2 01 23.661E 1 01 24.728E 1 00 13.752E 2 06d 2CL

dbk dbj C 1.0000 26.708E 1 01 11.029E 2 01 23.048E 1 01 25.473E 1 00 13.680E 2 04
SD L 1.0000 1.0000 21.079E 2 02 11.803E 2 01 21.351E 2 01 14.409E 2 06

SD a 1.0000 1.0000 1.0000 22.376E 1 01 11.700E 1 00 11.043E 2 04
ratios My 1.0000 1.0000 1.0000 1.0000 21.222E 2 01 17.902E 2 06

Re 1.0001 1.0000 1.0000 1.0000 1.0000 21.446E 2 09

T 11.180E 1 00 11.017E 1 00 22.651E 2 02 24.182E 2 01 11.690E 2 01 25.236E 2 06d 2CD

dbk dbj C 1.0000 19.983E 1 00 26.234E 2 02 21.352E 1 00 12.412E 2 01 22.481E 2 06
SD L 1.0000 1.0000 14.952E 2 03 13.478E 2 02 23.804E 2 03 16.470E 2 08

SD a 1.0000 1.0000 1.0001 15.606E 1 00 19.573E 2 02 12.326E 2 06
ratios My 1.0000 1.0000 1.0000 1.0001 14.447E 1 02 23.945E 2 07

Re 1.0000 1.0001 1.0000 1.0000 1.0000 11.606E 2 09

T 12.965E 1 00 11.269E 1 01 11.907E 2 01 13.047E 1 00 16.144E 2 01 14.748E 2 07d 2CM

dbk dbj C 1.0000 18.244E 1 00 11.233E 2 02 13.545E 1 00 26.423E 2 01 25.805E 2 05
SD L 1.0000 1.0000 21.076E 2 03 13.947E 2 02 11.459E 2 02 21.481E 2 06

SD a 1.0000 1.0000 1.0000 12.206E 1 00 12.385E 2 01 16.425E 2 07
ratios My 1.0000 1.0000 1.0000 0.9999 23.726E 2 02 22.892E 2 07

Re 1.0000 1.0000 1.0000 0.9999 0.9998 11.547E 2 10

TABLE B.1b

Second-Order Sensitivity Derivatives and Sensitivity-Derivative Ratios: QA.CD Method; Turbulent Example

bk\bj T C L a My Re

T 21.587E 1 02 25.480E 1 02 25.168E 2 01 21.883E 1 02 21.266E 1 02 21.664E 2 09d 2CL

dbk dbj C 1.0000 21.780E 1 03 22.415E 1 00 26.383E 1 02 24.057E 1 02 23.025E 2 08
SD L 1.0000 1.0000 25.723E 2 02 13.011E 2 01 27.414E 2 01 21.044E 2 09

SD a 1.0000 1.0000 1.0000 21.772E 1 02 21.068E 1 02 21.355E 2 08
ratios My 1.0000 1.0000 1.0000 1.0000 21.020E 1 02 16.374E 2 09

Re 1.0000 1.0000 1.0000 1.0000 1.0000 11.512E 2 16

T 17.245E 1 00 11.763E 1 01 22.782E 2 01 11.278E 1 01 16.118E 1 00 27.085E 2 10d 2CD

dbk dbj C 1.0000 16.397E 1 01 26.362E 2 01 13.285E 1 01 11.730E 1 01 23.797E 2 09
SD L 1.0000 1.0000 11.683E 2 02 25.967E 2 01 22.184E 2 01 11.675E 2 11

SD a 1.0000 1.0000 1.0000 12.879E 1 01 11.235E 1 01 21.916E 2 09
ratios My 1.0000 1.0000 1.0000 1.0000 15.029E 1 00 21.054E 2 09

Re 1.0000 1.0000 1.0000 1.0000 1.0000 11.104E 2 16

T 14.993E 1 00 11.492E 1 01 13.707E 2 01 21.283E 1 01 25.695E 1 00 13.513E 2 09d 2CM

dbk dbj C 1.0000 23.965E 1 00 18.127E 2 01 24.331E 1 01 22.995E 1 01 11.753E 2 08
SD L 1.0000 1.0000 23.088E 2 03 11.308E 1 00 13.977E 2 01 12.034E 2 10

SD a 1.0000 1.0000 1.0000 23.227E 1 01 22.348E 1 01 14.208E 2 09
ratios My 1.0000 1.0000 1.0000 1.0000 21.173E 1 01 12.259E 2 09

Re 1.0000 1.0000 1.0000 1.0000 1.0000 21.668E 2 17
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TABLE B.2a

Second-Order Sensitivity-Derivative Ratios: DDII.BB Method, Normalized by Results from the
QA.CD Method;
Laminar Example

bk\bj T C L a My Re

T 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000d 2CL

dbk dbj C 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SO L 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SD a 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ratios My 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Re 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

T 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000d 2CD

dbk dbj C 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SO L 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SD a 1.0000 1.0000 1.0000 1.0000 1.0001 1.0000
ratios My 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Re 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

T 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000d 2CM

dbk dbj C 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SO L 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SD a 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999
ratios My 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Re 1.0000 1.0000 1.0000 1.0000 1.0002 1.0000

TABLE B.2b

Second-Order Sensitivity-Derivative Ratios: DDIITC.BB Method, Normalized by Results from the
QA.CD Method;

Turbulent Example

bk\bj T C L a My Re

T 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000d 2CL

dbk dbj C 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SO L 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SD a 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ratios My 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Re 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

T 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000d 2CD

dbk dbj C 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SO L 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SD a 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ratios My 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Re 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

T 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000d 2CM

dbk dbj C 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000
SO L 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SD a 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ratios My 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Re 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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TABLE B.5TABLE B.3a

Computational Timing Comparisons: CPU TimeSecond-Order Sensitivity-Derivative Ratios; CD.CD Method
(Seconds)/Iteration/Linear System SolvedNormalized by Results from the QA.CD Method; Main-Diagonal

Terms Only; Laminar Example
Method Laminar Turbulent

T C L a My Re
DDII.BB(6) 0.57562 Not tested
DDII.BB(5)\(1) 0.1409\0.2675 Not tested

20.7096 218.31 271.90 218.78 12.138 23.023 DDIITC.BB(6) Not applicable 1.2295
d 2CL

db2
j DDIITC.BB(5)\(1) Not applicable 0.6630\2.5500

DDIITCFR.BB(6) Not applicable 0.6474
DDIITCFR.BB(5)\(1) Not applicable 0.2016\0.5216

11.803 14.341 15.158 13.027 11.214 11.095d 2CD

db2
j

TABLE B.6
11.017 15.160 218.00 10.6872 10.9608 10.6613d 2CM

db2
j Total Computer Memory Comparisons

Total memory
Method (Mw)

QA.CD, QA.CD(FJ) 7.39
DDII.BB(6), DDIITC.BB(6), DDIITCFR.BB(6) 48.85

TABLE B.3b DDII.BB(5)\(1), DDIITC.BB(5)\(1), 42.38\14.55
DDIITCFR.BB(5)\(1)

Second-Order Sensitivity-Derivative Ratios; CD.CD Method
Normalized by Results from the QA.CD Method; Main-Diagonal
Terms Only; Turbulent Example APPENDIX C: TABLES OF ACRONYMS

T C L a My Re TABLE C.1

General Terms10.8072 10.5389 212.55 21.274 11.000 131.81d 2CL

db2
j

2D Two-dimensional
3D Three-dimensional
AD Automatic differentiation11.028 10.8928 11.390 11.072 10.9992 11.353d 2CD

db2
j

ADIFOR Automatic differentiation of Fortran (software tool)
CFD Computational fluid dynamics
CPU Central processing unit (of computer)
CW Computational work (CPU time used)11.569 235.16 212.87 10.2042 10.9966 217.68d 2CM

db2
j FJ Frozen Jacobian (option for fast convergence of a CFD

solution)
FO First-order (sensitivity derivatives)
FR Indicates that the turbulence correction terms are frozen

for a specified number of iterations
g$p$ Parameter in all ADIFOR-generated FORTRAN source

code governing the length of do-loops to calculate a set
of derivativesTABLE B.4

HD Hand-differentiated (and hand-coded, as opposed to the
finite-difference approach or automatic differentiation)Computational Timing Comparisons: Total CPU

IIM Incremental iterative method (as opposed to standardTime (Seconds)
methods for solution of linear matrix equations)

LU Lower-upper (factorization)
Method Laminar Turbulent LHS Left-hand side (of an equation)

NDV Number of aerodynamic design (input) variables
QA.CD 14,000a 23,000a NOF Number of aerodynamic output functions

OM Order of magnitude (reduction of error)QA.CD(FJ) 7,018 14,941
QA Quasi-analytical (differentiation of discretized equationsDDII.BB(6) 14,543 Not tested

by calculus, or ‘‘analytically,’’ and by hand)DDII.BB(5 1 1) 4,300a Not tested
RHS Right-hand side (of an equation)DDIITC.BB(6) Not applicable 64,000a

SD(s) Sensitivity derivative(s)DDIITC.BB(5 1 1) Not applicable 51,000a

SO Second-order (sensitivity derivatives)
DDIITCFR.BB(6) Not applicable 33,899 TLNS Thin-layer Navier-Stokes (equations or code)
DDIITCFR.BB(5 1 1) Not applicable 14,000a

TC Indicates that AD-generated turbulence-correction terms
are included

a Projected result based on timings from Table B.5.
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